SatisfySense Prototype
from tensorflow.keras import regularizers
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications import ResNet152V2
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(128, (3,3), activation='relu', padding='same', input_shape=(img_height, img_width, 3)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, (3,3), activation='relu', padding='same', kernel_regularizer=regularizers.l2(0.1)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(256, (3,3), activation='relu', padding='same', kernel_regularizer=regularizers.l2(0.1)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(class_num, activation='softmax')
])Last updated