📟
Nico Marcelino's Portfolio
  • đŸ–Ĩī¸Introduction
  • đŸ•šī¸Game Projects
    • Just Space Invaders (2023)
    • Just Othello (2023)
    • Immunodrive (2022)
    • Are You Smarter than a Fetus? (2023)
    • Haunted Hallways (2023)
    • Rogue Resurgence (2023)
    • Cosmic Clash (2024)
    • Karirku Games (2024)
  • 💾Machine Learning Projects
    • Rock-Paper-Scissors Classifier
    • SatisfySense Prototype
    • Bottle Image Classifier Model
    • News Article Classifier Model
    • Gold Price Forecasting Test Model
  • đŸ“ĻMiscellaneous
    • O'Rented Application
    • Sussybooks Manager
    • Krusty Krabs App
    • FGO SC Calculator
    • Pixel Art Works
    • Soundtracks
    • Research Papers
  • 📑Certifications
    • General
    • Game Development
    • Machine Learning
    • Others
Powered by GitBook
On this page
  1. Machine Learning Projects

Bottle Image Classifier Model

PreviousSatisfySense PrototypeNextNews Article Classifier Model

Last updated 1 year ago

Bottle Image Classifier is a convolutional neural network (CNN) model that classifies images of bottles. The CNN model detects what type of bottle it is. It detects water bottles, soda bottles, wine bottles, plastic bottles and beet bottles. The model is written in Python using Tensorflow and

The dataset used is the vencerlanz09's Synthetic Bottle Images dataset on . After training and testing, the model has 92.6% accuracy and 92.13% validation accuracy. This model was compiled with the "categorical crossentropy" loss function, "Adam" optimizer and uses accuracy as its metric.

model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dropout(0.25),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dropout(0.25),
    tf.keras.layers.Dense(5, activation='softmax')
])

💾
Kaggle
Google Colaboratory
Logo